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In describing the destructive effect of a camouflet explosion in solid media there is 
extensive use of zonal models [1-4] separated normally into a grinding zone near the charge, 
an intermediate zone of radial cracks, and an outer zone of elasticity. The difference 
in [1-4] in describing zones of radial cracks consists in different failure criteria for 
elastic material by an outer zone of radial cracks. Here a force approach is used for 
critical tangential stresses [I, 2], taking account from an energy viewpoint of energy con- 
sumed in crack formation [3, 5] and a kinematic approach [4]. 

In [6-8] it is suggested that the zone of radial cracks and outer elastic zone are 
considered in a single elastic arrangement. Crack growth is determined by the dependence 
of crack velocity on stress intensity factor at its tip, which is a rating characteristic 
for broken material. The scheme suggested is easily realized in a quasistatic arrangement 
for the problem of exploding a cord charge, since a broad class of problems about equili- 
brium for a radial crack system in an elastic plane has been studied. Difficulties in ob- 
taining accurate dynamic solutions for this problem compel us to find approximate solutions. 
Such a solution on the approach of a large number of cracks is obtained if again we turn 
to separating the radial and outer elastic zones. A similar approach for the static problem 
is used in [9]. 

In an elastic zone for displacements u(r, t) for > Z(t) 
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where a is longitudinal wave velocity; E is Young's modulus; ~ is Poisson's ratio; P0 is 
material density. 

In the zone of radial cracks for columnar elasticity with r0(t) < r < s an equation 
is fulfilled [2] 
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For stress tensor components in this zone 
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We c o n s i d e r  t h e  p r o b l e m  w i t h  t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s :  a t  t h e  i n n e r  b o u n d a r y  
o f  t h e  r a d i a l  c r a c k  z o n e  w i t h  r = r 0 ( t )  

ar = --p( t) ;  ( 4 )  

and at the crack front with r = s 

~1 = U ;  
Ou I 

i [aut Ou) 
270n = V - -  V~ + T (~" + at,) (TT-r - -  ~ (i • 0), 

(i = o) .  2?0n = V - -  V 1 + " \ Or Or,] 

E q u a t i o n s  ( 5 )  and  ( 6 )  a r e  e x p r e s s i o n s  o f  c o n t i n u i t y  f o r  mass  f l o w s  and  a p u l s e  i n  
L a g r a n g i a n  v a r i a b l e s ,  and  Eq. ( 7 )  e x p r e s s e s  t h e  r u l e  f o r  t r a n s f e r  o f  e n e r g y  a c r o s s  t h e  
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crack front. In these equations V and V z are bulk density of elastic energy; 70([) is 
density of surface energy going into crack formation; n is the number of cracks per unit 
length of their front. With uniformly distributed N cracks n = N/(2~s An energy con- 
servation equation is given in a similar form in [4]. Here only term 270n , determining 
energy dissipation.going into failure, is concretized, and the energy condition for an im- 
mobile front with s = 0 is specified. 

Function 70 is connected with stress intensity factor by the relationship [i0] 
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where b is transverse wave velocity; K I is stress intensity factor. Taking account of this 
connection it is possible to assume 7o is a known function for crack front velocity s if 
rating relationship KI(s is known. In this case the rule for movement s is found with 
solution of the stated problem. If s is prescribed, then (7) makes it possible to deter- 
mine 70(t) and Ki(t) according to (8). 

As an example of the latter arrangement we carry out solution of a self-modelling 
problem of expansion of a columnar elasticity zone with constant velocity from zero size 
under the effect of external pressure p = p0t/t0 . This problem is a zonal approximation 
of the self-modelling problem for growth at constant velocity of a star of a considerable 
number of cracks under the action of internal concentrated forces. It is not resolved in 
the general case, and only the case of two cracks is considered. 

Condition (4) for this problem is written in the form 

O r = --Poto/t withr = v0t. (9) 

With this loading, displacement should be a uniform function of a zero power relative to 
variables r and t. A general solution of this form of Eq. (2) is the function 
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Taking account of (3), from (9) we obtain a I = -P0t0v0(l - "2) v/l- vio/a~/E �9 For velocity 
and radial strength at the crack front:with r = ct ~ 0 
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Solution of gq. (i) in the elastic zone is found in the form u = 0~/8r. For potential 

__ 10qo t 02q~ 
we write an equation similar to ( 2 ) :  ~  r g - - - - - - - - -  Solution of this (with the re- 
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quired degree of uniformity and providing conversion of displacement u to zero with r = at, 
which is determined~b the initial repose condition [ii]) has the form ~p(r, t) = Alr(z in 
(z -- /z z -- i) + ~l')/a, z = a t/r. In this way 

u ( r ,  t )  = A I V z "  - -  l / a .  ( 1 2 )  

For velocity and radial stress ahead of the crack front with r = ct + 0 
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Unknown constant A I in (12) and (13) should be determined from conditions at the crack front. 
Condition (5) is satisfied by selecting constants a ~ in (i0), and from (6) and (ii), (13) 
we find 
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Equality (7) for a determinate form of movement makes it possible to find Y0, and using (8) 
to find Kl(t): 
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Q = 2guotopo/N. 
With the limiting conversion of v 0 and c to zero expression, (14) is transformed into 

an asymptotic of the solution for the static problem of stresses for a star of N cracks with 
length s by internal forces Q with large N [12]: K I = Q/N/(2~). 

The method suggested makes it possible also to solve static problems of equilibrium 
for an elastic half-space with a circular or a spherical cavity with a prescribed internal 
pressure and presence of a radial system of a large number of cracks. At the front of the 
crack zone a continuity condition is fulfilled for o r and u, and in addition energy condition 
(7) is fulfilled. In using this method to solve the Bowie problem results are obtained 
agreeing asymptotically with those known with a large number of cracks [12, 13]. 

The most important advantage of this approach is the possibility of realizing numerical 
solution of problems for breaking a brittle material during blasting from the position of 
fracture mechanics in a general scheme of a zonal approach to the problem in question. With 
this approach it is possible to take account of failure for zones of different structure 
close to the explosive charge and to construct adequate mathematical models of the problem. 
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